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Simulations of two-dimensional turbulent convection in a density-stratified fluid
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High resolution computer simulations of two-dimensional convection using the anelastic approximation are
presented. These calculations span Rayleigh numbers fr8mL08 for Prandtl number equal to unity, with
the fluid density decreasing by a factor of 12 from the bottom to the top of the convection region. This range
covers several decades in the “hard” turbulent regime. While many studies of this sort have been conducted for
the Boussinesq approximatidne., no density stratificationwe use the anelastic approximation with a sig-
nificant density stratification in this turbulent regime. The convection is dominated by a large-scale coherent
flow composed of ascending and descending superplumes. We find a power law exponent of 0.28 for the
Nusselt-Rayleigh number scaling and a power law with exponent of 0.50 for the Reynolds-Rayleigh humber
scaling for the entire parameter space studied. These values are very similar to those determined experimen-
tally and analytically for convection with no density stratification.
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[. INTRODUCTION cell do not communicate and, therefore, that the depth of the
cell should not enter into the scaling relation. Early experi-
Turbulent convection manifests itself in many science andnents seemed to confirm this expongf, but more recent
engineering applications. Modeling it accurately is crucial inexperiments that were able to reach further into the turbulent
the understanding of the geodynamo, the solar dynamo, ategime yielded different results. In particular, recent experi-
mospheric and ocean circulations, and stellar convection, tments have noted the prominence of a dominant large-scale
name a few. Because of the nonlinearities and strong cowecoherent flow. This large-scale flow could provide for the
pling inherent in the Navier-Stokes equations, the developinteraction of the top and bottom boundaries of the Rayleigh-
ment of accurate numerical models has proven difficult, aBenard cell that was previously ignored. The persistence of
best. Recently though, both numerical and experimental rethis large-scale coherent flow could very well change the
sults have advanced our understanding of turbulence. Alpower law exponent in the Nu-Ra scaling relation. In fact,
though simulations of real conditions in the interior of a starmore recent experiments that observe this coherent flow also
or planet are still out of reach, we can hope that certairrecord exponents smaller than the classicaklation, with
relations apply throughout the turbulent regime. For ex-most experiments giving a power law exponen&dfL,2,5].
ample, it is expected that there is a power law relation be- Some analytic theories have been put forth to explain this
tween the Nusselt numbéNu), which is a measure of the exponen{1,6,7]. The theory laid out in Shraiman and Siggia
global heat flux, and the Rayleigh numl&a) , which is a  [6] assumes that the large-scale coherent flow sets up a ther-
measure of convective driving, that holds throughout the turmal boundary that is nested within the viscous boundary
bulent regime. layer. This theory suggests that theelation is controlled by
Determining the value of the exponent in this scaling re-the shear flow. A different derivation presented by Rét.
lation has been the goal of many experimental and numericaloes not include the large-scale shear flow, but assumes that
studies. Most of these studies have been conducted fdyuoyancy accelerates detached plumes into the interior of the
Rayleigh-Benard convection. Recent experimefit2] at  convective fluid. The region over which this acceleration oc-
high Ra have found robust Nu-Ra scalings that hold forcurs provides an intermediate length scale used to derive the
many decades in the turbulent regime. The dependence Gnrelation. Exactly what drives this scaling relation is still an
the Prandtl numbe(Pr), which measures the viscous to ther- unanswered question. A comprehensive analytic study on
mal diffusion, seems to vary with the Ra regime. Nu-Ra and Ra-Reynolds numb@re) scaling has been con-
The classical analytic theory by Priestlg3] predicted a ducted by Grossman and LohE&. In their theory a large-
power law scaling NuRa3. This scaling is derived by as- scale coherent roll is necessary, but different scalings are
suming that the hot and cold plates of the Rayleigh-Benardlerived for different configurations of the boundary layers.
They find different scaling laws hold in different Ra-Pr pa-
rameter space and their analytic scaling laws are consistent
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been difficult to numerically study the same high Ra regimegunction of the vertical coordinate; all other variables are
as the experiments, but some attempts have been made. K@erturbations relative to this background state. We assume a

[8] conducted direct numerical simulations of Rayleigh-Newtonian fluid with a constant dynamic viscosity ().
Benard convect|07n in dthree-dimensional3D box for 5  since we are interested in stellar and planetary convection,
x10°<Ra=2x10'. In that paper, a Nu-Ra scaling consis- ;%" anq’c are assumed to be eddy diffusivities, which is
tent with the experimental result of a power law exponent Ofvvhy our diffusive heat flux in Eq(3) is proportional to the

2 was found. However, the large-scale coherent structure ir@radient of entropy{14]. We also assume two-dimensional

herent in experimental results was not evident in the simula(x 7) solutions, i.e., no gradients or flow in the third dimen-

Gion (y). The horizontal boundary conditions are periodic
and the top and bottom boundary conditions are isentropic,
Stress-free, and impermeable.

U= For numerical simplification, we cast the momentum
equation(2) in terms of a vorticity equation, where the vor-
ticity is defined as

quite reaching the “hard” turbulent regime.
Two-dimensional calculations, which of course are not a
realistic, are able to reach higher Ra. The highest Ra sim
lations so far were conducted by Vincent & Yugh10] and
spanned 19<Ra<10" These calculations found a Nu-Ra
power law exponent o for Ra above 18 consistent with
some analytic theoriegl1,7]. However, laboratory experi- o=VX0 @)
ments at similar Ra do not reproduce this scaling law. '
All of the aforementioned numerical studies were con-|n addition, we define a stream function such that
ducted using the Boussinesq approximation, which assumes
no density stratification across the convective region. This ;Jzﬁx 1,71 (5)
approximation is well suited for the comparison of numerical
work with experiments. However, atmospheres and interior®y solving for mass flux via a stream functidf), conser-
of stars and planets are compressible; and so for these profation of masg1) is ensured.

lems it is more appropriate to use the anelastic approxima- After taking the curl, the momentum equation becomes
tion[12,13. Here, we wish to gain some insight into how the

turbulence is affected by compressibility. This could tell us do . g s —,
how well laboratory experiments conducted with an essen- E“L(U'V)w:hpvzw_ o ax T W
tially incompressible fluid are applicable to astrophysical and . P
planetary problems. v, h, dv,
+_ —_—— —
dz Viux 3 ox)’ ©®

II. NUMERICAL TECHNIQUE

whereh,, is the inverse of a density scale heighnﬁdz and

Unlike the Boussinesq approximation, the anelastic ap- 4 h q s of th loci
proximation allows for a stratification in the background Yx andv are thex andz components of the velocity, respec-

density and temperature. As in the Boussinesq case, this a \-’?r{]' icit d heat i ved usi F
proximation is valid for fluids where convective speeds are. € vct)r 'f'ty anf ea e?hue:jm_ns a(;e S? V.? (l;.‘;‘fmg a rou-
much less than the speed of sound and the '[hermodynamrilfar spectral transiorm method x and a finite difierence

perturbations are small compared with the background Statguertehsc’?h:rk;:ur?c:]aer?/%zgz\r/sga:iri ae;ll—lhﬁas(f)rr\?sgsgi\:eg;iéjvzgéing
The Navier-Stokes equations using the anelastic approxl-s done using the explicit second-order Adams-Bashforth

mation are method for the nonlinear terms and an implicit Crank-
§-;5=0 1) !\Iicolsoln method for the Iinear. terms. The code is parallel-
' ized using MPI. The aspect ratio of the rectangular convect-
e ing region is set to two. For Ra10?—10' the resolution is
v

@) 2048 grid points inx and 800 grid levels irz. For Ra
’ =10"-10"? the resolution is 4096 grid points iand 2016
grid levels inz. For our highest Ra simulation, this resolution

. e - - S . 1.
— . = — — 2 — .
5t +(-V)v VP+ Cpgz+;{V v+3V(V v)

S . . 1. — is barely adequate.
EHU'V)SZ =V pkTVS, 3 The kinematic viscosity and thermal diffusivity are in-
pT versely proportional to densityx(v>p ') keeping the Pr

N ] ) constant in z and equal to unity. The Ra and Re are defined
wherev represents the fluid velocitys represents the en- ¢

tropy perturbationg,, is the (constant specific heat at con-

. L — gASD? uD
stant pressureg is the constant gravitational acceleration, Ra= . Re=—. (7)
is the kinematic viscosityk is the thermal diffusivity,P is CpvK v
the reduced pressu(pressure perturbation/+ gravitational  Here D is the depth of the boxAS is the prescribed drop in
potential perturbation[14] andp andT represent the back- entropy acros® and U is the maximum vertical velocity,

ground density and temperature, respectively. Overbars refevhich is usually the velocity of the large-scale flow. All
to an adiabatic hydrostatic background state that is only guoted Rayleigh numbers are the values at the bottom of the
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box, where the Rayleigh number is the highest. Similarly the,, ENTROPY
Reynolds number is calculated using the valuevadt the g Ra=10'0 Ra=10'! Ro=10'2
bottom of the box. The Nu is defined as §°"5
a9 a
7 3
bottom
Nu= ————.
. AS ® E 0.3 i AR
—_— E 0.6 1. 0.6 1.3 0.6 1.3
D HORIZONTAL DIMENSION

FIG. 1. Blow up of the descending plumes for the various Ray-
gh numbers shown in Fig. 2. The size of these images is in terms
f the total deptiD) of the convecting region.

We choose the background temperature, density, and preg:
sure for our anelastic model to be described by a polytropeé

T<Z)=Tb°t<1_z_o)’ ©) driving causes the beginning of the inertial range to be
shifted to larger wave numbdsmaller wavelengths The

— z\" majority of the resolution in these models is clearly used to
P(Z):Pbot( 1- Z_o> : 10 giscern the inertial range. In the highest Ra case, the wave

numbers barely reach the dissipation range. To compare
— z\"*t these models with traditional Rayleigh-Benard convection
p(z):pbot(l_z_o) (1) simulations and experiments, we calculated Nu-Ra and

Re-Ra scalings. We find a Nu-Ra power law scaling of the
The polytropic indexn, and the number of density scale form, Nu=0.53R&?® (Fig. 5), which matches the experi-

heights acros®, N,,, determine the constaat, mental? scaling quite well1].
For comparison, we have also run three Boussinesq mod-
- D 12 els with Ra ranging from T0to 10" with Pr equal to unity.
O_—.
1—e~ Np /n

For the anelastic cases presented haerel (ideal gag
andN,=2.5 (i.e., the bottom density is=12 times greater
than the top densily

Ill. RESULTS

We examined five anelastic cas@l with Pr=1): Ra
=10°,10°,10%° 10", and 182 The flow dynamics are domi-
nated by one major ascending and expanding plume and one
major descending and contracting plume, which dictate the
large-scale coherent flow. Many other plumes rise from the
boundary layer, but either detach or are swept by the large-
scale wind into the main rising plume before they have a
chance to rise very far.

The nature of these superplumes is similar to that de-
scribed in Refs[9,10]; it is characterized by a major plume
with smaller plumes branching from {Fig. 1). The super-
plumes are very structured and become even more structured
on the small scale as the Rayleigh number is increased, as
can be seen in Figs. 1 and 2. These superplumes are also
concentrations of intense small-scale vortidifyp] and, as
the Ra is increased, vorticity not only becomes more com-
plex within the plume cores, but more coherent vortices are
present throughout the simulated region as seen in Fig. 3.

A” of these cases are te'chnlcally in the “hard” turbulent FIG. 2. Snapshots of the entropy perturbation with dark colors
re_zglme_[Z], with Re varying from 16 to_ 10°. Two- representing low entropyi.e., cold heavy fluig and light colors
d|men_3|onal turbulence is marked by thg sm_1u|tane0u_s COMrgpresenting high entropga) Ra= 10, superplume and branching
servation of energy and enstrophy. The inertial range is diCp|ymes are seen, additional plumes fisiak) from the bottom(top)

tated by downward enstrophy cascade vgitfké energy  of the cell but are swept into the major ascendidgscending
dependence. Energy spectra fof $Ra< 10" are shown in  plume by the large-scale flowb) Ra=10", (c) Ra=10'2 This

Fig. 4. At Ra= 10° the kinetic energy spectrum follows the sequence illustrates how relative energy in the small scales in-
k=2 law quite well. As the Ra is increased the convectivecreases with Rayleigh number.

VERTICAL DIMENSION

o 2
HORIZONTAL DIMENSION
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VORTICITY Kinetic Energy Spectra
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FIG. 3. Same as Fig. 2 except vorticity is plotted here. Clock- ] Ra=10
wise flow is represented with light colors and counter-clockwise 10%] .
flow with dark colors. Strong coherent vortices are seen throughout.
Concentrations of high vorticity occur in the rising and descending 100L . - .
plumes 1 10 oo 1000 10000

1og1 0(wave number)

In these models, we find a Nu-Ra scaling law Nu FIG. 4. Kinetic energy versus horizontal wave number for mod-
—0.44R82° as expectedFig. 6). The comparison confirms els with 10<Ra<10% Kinetic energy is normalized iln eaph plot.
that as far as the scaling laws are concerned, Boussinesq aheSe models are all clearly turbulent, with the inertial range
anelastic approximations are similar. But, as can be seen Hatching the analyti&™* slope(straight line.
Fig. 7. the models are qualitatively quite different. The
Boussinesq models are more top-bottom symmetric, due tbuoyant plumes. The boundary conditions in these models
the fact that the background density and viscous and thermalre stress-free; therefore, there is no traditional viscous
diffusivities are constanfunlike the anelastic approxiation boundary layer. The theory presented[B] assumes that
What is also very apparent is the fact that as the plumes risthere is a thermal boundary layer nested inside the viscous
in the Boussinesq fluid they do not expand and the mushboundary layer in order to arrive at tHescaling relation.
room cloud effect is missing. Because of this lack of expan-The results of our models seem to indicate that this is not
sion (contraction the fluid looks more laminar than its ane- necessary. Therefore, the large-scale coherent flow may not
lastic counterpart. be the driving factor in the Nu-Ra relation. This is consistent
The major differences between these models and thossith the experiment by Cilibertet al. [16] in which the
calculated by Refg9,10] are that these are anelastic and thatstandardé scaling law was reproduced even when the large-
these use a Chebyshev grid in the vertical direction whiclscale coherent flow was blocked. This indicates that either
allows us to resolve the thermal boundary layer very well. Inthe buoyant plumes drive the scaling relation or that this
Fig. 8, it is obvious that the boundary layer is very thin, butscaling is robust and can be reproduced in many ways.
because of the Chebyshev grid, we have 100 zones within For Ra= 18— 10'° and for Pr=1 Castaincet al.and Cha-
this boundary layer. A uniform grid with the same total num-vanneet al.[1,5] find a Re-Ra power law exponent of 0.49.
ber of vertical zones would have only ten zones within theAnalytic models suggest an exponent of 0[50. We find
boundary layer. This fine resolution of the boundary layerthis exponent to be 0.5Fig. 5) for our anelastic models and
may be crucial in distinguishing th& relation from the3 0.49 (Fig. 6) for our Boussinesq models.
relation. The proximity of these scaling relations to experimental
One of the major questions regarding the Nu-Ra scaling isnd analytic work is unexpected, considering these models
just what drives thé scaling. The two main theories are that are for an anelastic gas with a significant density stratifica-
it is either (1) driven by the shear flow at the boundaries settion in the vertical and that they are constrained to be two
up by the large-scale coherent flow @) dictated by the dimensional. In the analytic derivations by Grossman and
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8‘3 * FIG. 7. Entropy perturbation for a Boussinesq simulation with
~4 Re= 117050 Ra=10'%. The entropy perturbation is directly proportional to the
3 temperature pertubation in the Boussinesq approximation, with light
7 8 9 10 11 12 13 colors representing warm fluid and dark colors representing cool
log, , (Ra) fluid. Note the lack of expansion in the plumes that is seen in the

FIG. 5. logy(Nu) versus logy(Ra), similarly for Re-Ra. These anelastic case and the top-bottom symmetry that is lacking in the
plots show the Nu-Ra and Re-Ra scaling relations. No transition ignelastic case.
detected up to Ra10' for either scaling relation.

ferent convective structures. In particular, there are more

Lohse[7], the fluid is assumed to be incompressible. Com-Jrominent Small-sc_ale plumes sinking from the top boundary
pressiblity would require an additional term in the energy(Where the diffusivities are no longer lajga7].
dissipation; but this additional term behaves the same as the One of the salient features of laboratory Rayleigh-Benard
incompressible diffusion term and therefore does not affecEXPeriments has been the appearance of the large-scale co-
the scaling law exponents. The equations for the thermdperent flow. This coherent flow could be a mechanism for
dissipation are the same as in the incompressible case witducing some two dimensionality in a three-dimensional
temperature replaced by entropy and the Nu redefined witHow. I this large-scale flow persists at even higher Rayleigh
respect to the entropiB). Therefore, the scaling relations so NUmbers it may be an indication that two-dimensional mod-
derived for the anelastic case are the same as those for t§& Of Rayleigh-Benard convection can provide accurate scal-
Boussinesg. Clearly anelastic convection differs from Boussl"d laws for 3D laboratory experiments, as we have seen
inesq(incompressibleconvection in the details of the flow. Nere.
Since in a fully compressible calculation, risirfginking
plumes expandcontrac} as in planetary atmospheres and IV. CONCLUSIONS
stellar interiors. However, the total heat transfer, as measured ) . o
by the NU, is apparent'y little affected by this difference in Our 2D anelaS'[IC convection fOI‘ constant dynamIC VISCOS-
flow structure. ity and thermal conductivity is dominated by a large-scale

It is important to recall that here we have assumed th&oherent flow similar to that observed in experiments. This
fluid has constant dynamic viscosity and thermal conductiveoherent flow is shuttled by an ascending and descending
ity. Other anelastic simulations with constant kinematic vis-Superplumes, as seen in previous Boussinesq simulations.

cosity () and thermal diffusivity &) show somewhat dif-
Thermal Boundary Layer

10
241 3 h
222}
8?2'0 ] X 0.29 § 1
~ 18t X Ny=0.44R0 S ]
1.6}
8 g 0 11 12
log,, (Ra) 0 . . .
7 ] 500 1000 1500 2000 2500
6F ] Z-level
b} x FIG. 8. The mean entropy for an anelastic model with Ra
S5t x E =10 plotted versus the-level number. The entropy here has been
_3" * set to 0 at the top boundary and 10 at the bottom boundary. This
4F Re=1.3Ra%49 i prescribedA S helps determine the dimensionless Rayleigh number
3 , (7). Note, since a Chebyshev grid is employed in the model, the
8 g 10 11 12 actual thermal boundary layer thickness is 1/200 of the depth and
1og,, (Ra) would not be perceptible in this plot if entropy were plotted versus
FIG. 6. Same as Fig. 5, except for Boussinesq models. the z coordinate.
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