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Simulations of two-dimensional turbulent convection in a density-stratified fluid
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High resolution computer simulations of two-dimensional convection using the anelastic approximation are
presented. These calculations span Rayleigh numbers from 108–1012 for Prandtl number equal to unity, with
the fluid density decreasing by a factor of 12 from the bottom to the top of the convection region. This range
covers several decades in the ‘‘hard’’ turbulent regime. While many studies of this sort have been conducted for
the Boussinesq approximation~i.e., no density stratification!, we use the anelastic approximation with a sig-
nificant density stratification in this turbulent regime. The convection is dominated by a large-scale coherent
flow composed of ascending and descending superplumes. We find a power law exponent of 0.28 for the
Nusselt-Rayleigh number scaling and a power law with exponent of 0.50 for the Reynolds-Rayleigh number
scaling for the entire parameter space studied. These values are very similar to those determined experimen-
tally and analytically for convection with no density stratification.
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I. INTRODUCTION

Turbulent convection manifests itself in many science a
engineering applications. Modeling it accurately is crucial
the understanding of the geodynamo, the solar dynamo
mospheric and ocean circulations, and stellar convection
name a few. Because of the nonlinearities and strong c
pling inherent in the Navier-Stokes equations, the devel
ment of accurate numerical models has proven difficult
best. Recently though, both numerical and experimental
sults have advanced our understanding of turbulence.
though simulations of real conditions in the interior of a s
or planet are still out of reach, we can hope that cert
relations apply throughout the turbulent regime. For e
ample, it is expected that there is a power law relation
tween the Nusselt number~Nu!, which is a measure of the
global heat flux, and the Rayleigh number~Ra! , which is a
measure of convective driving, that holds throughout the
bulent regime.

Determining the value of the exponent in this scaling
lation has been the goal of many experimental and nume
studies. Most of these studies have been conducted
Rayleigh-Benard convection. Recent experiments@1,2# at
high Ra have found robust Nu-Ra scalings that hold
many decades in the turbulent regime. The dependenc
the Prandtl number~Pr!, which measures the viscous to the
mal diffusion, seems to vary with the Ra regime.

The classical analytic theory by Priestley@3# predicted a
power law scaling Nu}Ra1/3. This scaling is derived by as
suming that the hot and cold plates of the Rayleigh-Ben
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cell do not communicate and, therefore, that the depth of
cell should not enter into the scaling relation. Early expe
ments seemed to confirm this exponent@4#, but more recent
experiments that were able to reach further into the turbu
regime yielded different results. In particular, recent expe
ments have noted the prominence of a dominant large-s
coherent flow. This large-scale flow could provide for t
interaction of the top and bottom boundaries of the Raylei
Benard cell that was previously ignored. The persistence
this large-scale coherent flow could very well change
power law exponent in the Nu-Ra scaling relation. In fa
more recent experiments that observe this coherent flow
record exponents smaller than the classical1

3 relation, with
most experiments giving a power law exponent of2

7 @1,2,5#.
Some analytic theories have been put forth to explain

exponent@1,6,7#. The theory laid out in Shraiman and Sigg
@6# assumes that the large-scale coherent flow sets up a
mal boundary that is nested within the viscous bound
layer. This theory suggests that the2

7 relation is controlled by
the shear flow. A different derivation presented by Ref.@1#
does not include the large-scale shear flow, but assumes
buoyancy accelerates detached plumes into the interior o
convective fluid. The region over which this acceleration o
curs provides an intermediate length scale used to derive
2
7 relation. Exactly what drives this scaling relation is still a
unanswered question. A comprehensive analytic study
Nu-Ra and Ra-Reynolds number~Re! scaling has been con
ducted by Grossman and Lohse@7#. In their theory a large-
scale coherent roll is necessary, but different scalings
derived for different configurations of the boundary laye
They find different scaling laws hold in different Ra-Pr p
rameter space and their analytic scaling laws are consis
with experimental results at low and high Ra.

Because of the highly nonlinear nature of the Navi
Stokes equations and the broad range of length scales, i
©2003 The American Physical Society15-1
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been difficult to numerically study the same high Ra regim
as the experiments, but some attempts have been made.
@8# conducted direct numerical simulations of Rayleig
Benard convection in a~three-dimensional! 3D box for 5
3104<Ra<23107. In that paper, a Nu-Ra scaling consi
tent with the experimental result of a power law exponen
2
7 was found. However, the large-scale coherent structure
herent in experimental results was not evident in the sim
tions. These simulations were limited to a low Ra regime,
quite reaching the ‘‘hard’’ turbulent regime.

Two-dimensional calculations, which of course are not
realistic, are able to reach higher Ra. The highest Ra si
lations so far were conducted by Vincent & Yuen@9,10# and
spanned 108<Ra<1014. These calculations found a Nu-R
power law exponent of12 for Ra above 108, consistent with
some analytic theories@11,7#. However, laboratory experi
ments at similar Ra do not reproduce this scaling law.

All of the aforementioned numerical studies were co
ducted using the Boussinesq approximation, which assu
no density stratification across the convective region. T
approximation is well suited for the comparison of numeri
work with experiments. However, atmospheres and inter
of stars and planets are compressible; and so for these p
lems it is more appropriate to use the anelastic approxi
tion @12,13#. Here, we wish to gain some insight into how th
turbulence is affected by compressibility. This could tell
how well laboratory experiments conducted with an ess
tially incompressible fluid are applicable to astrophysical a
planetary problems.

II. NUMERICAL TECHNIQUE

Unlike the Boussinesq approximation, the anelastic
proximation allows for a stratification in the backgroun
density and temperature. As in the Boussinesq case, this
proximation is valid for fluids where convective speeds
much less than the speed of sound and the thermodyn
perturbations are small compared with the background s

The Navier-Stokes equations using the anelastic appr
mation are

¹W • r̄vW 50, ~1!

]vW

]t
1~vW •¹W !vW 52¹W P1

S

cp
gẑ1 n̄F¹2vW 1

1

3
¹W ~¹W •vW !G , ~2!

]S

]t
1~vW •¹W !S5

1

rT
¹W •rkT¹W S, ~3!

where vW represents the fluid velocity,S represents the en
tropy perturbation,cp is the ~constant! specific heat at con
stant pressure,g is the constant gravitational acceleration,n̄

is the kinematic viscosity,k̄ is the thermal diffusivity,P is
the reduced pressure~pressure perturbation/r̄ 1 gravitational
potential perturbation! @14# and r̄ and T̄ represent the back
ground density and temperature, respectively. Overbars r
to an adiabatic hydrostatic background state that is on
02631
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function of the vertical coordinate; all other variables a
perturbations relative to this background state. We assum
Newtonian fluid with a constant dynamic viscosity (r̄ n̄).
Since we are interested in stellar and planetary convect
our n̄ and k̄ are assumed to be eddy diffusivities, which
why our diffusive heat flux in Eq.~3! is proportional to the
gradient of entropy@14#. We also assume two-dimension
(x,z) solutions, i.e., no gradients or flow in the third dime
sion (y). The horizontal boundary conditions are period
and the top and bottom boundary conditions are isentro
stress-free, and impermeable.

For numerical simplification, we cast the momentu
equation~2! in terms of a vorticity equation, where the vo
ticity is defined as

vW 5¹W 3vW . ~4!

In addition, we define a stream function such that

r̄vW 5¹W 3cW . ~5!

By solving for mass flux via a stream function~5!, conser-
vation of mass~1! is ensured.

After taking the curl, the momentum equation become

]v

]t
1~vW •¹W !v5hrvzv2

g

cp

]S

]x
1 n̄¹W 2v

1
]n̄

]z S ¹W 2vx2
hr

3

]vz

]x D , ~6!

wherehr is the inverse of a density scale heightd ln r̄/dzand
vx andvz are thex andz components of the velocity, respec
tively.

The vorticity and heat equations are solved using a F
rier spectral transform method inx and a finite difference
method on a Chebyshev grid inz. The Chebyshev grid en
sures the boundary layers are well resolved. Time advan
is done using the explicit second-order Adams-Bashfo
method for the nonlinear terms and an implicit Cran
Nicolson method for the linear terms. The code is paral
ized using MPI. The aspect ratio of the rectangular conve
ing region is set to two. For Ra5108–1010 the resolution is
2048 grid points inx and 800 grid levels inz. For Ra
51011–1012 the resolution is 4096 grid points inx and 2016
grid levels inz. For our highest Ra simulation, this resolutio
is barely adequate.

The kinematic viscosity and thermal diffusivity are in
versely proportional to density (k̄,n̄}r̄21) keeping the Pr
constant in z and equal to unity. The Ra and Re are defi
as

Ra5
gDSD3

cpnk
, Re5

UD

n
. ~7!

Here,D is the depth of the box,DS is the prescribed drop in
entropy acrossD and U is the maximum vertical velocity,
which is usually the velocity of the large-scale flow. A
quoted Rayleigh numbers are the values at the bottom of
5-2
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box, where the Rayleigh number is the highest. Similarly
Reynolds number is calculated using the value ofn̄ at the
bottom of the box. The Nu is defined as

Nu5

U]S

]zU
bottom

DS

D

. ~8!

We choose the background temperature, density, and p
sure for our anelastic model to be described by a polytro

T̄~z!5TbotS 12
z

zo
D , ~9!

r̄~z!5rbotS 12
z

zo
D n

, ~10!

p̄~z!5pbotS 12
z

zo
D n11

. ~11!

The polytropic indexn, and the number of density sca
heights acrossD, Nr , determine the constantzo ,

zo5
D

12e2Nr /n
. ~12!

For the anelastic cases presented here,n5 3
2 ~ideal gas!

and Nr52.5 ~i.e., the bottom density is'12 times greater
than the top density!.

III. RESULTS

We examined five anelastic cases~all with Pr51): Ra
5108,109,1010,1011, and 1012. The flow dynamics are domi
nated by one major ascending and expanding plume and
major descending and contracting plume, which dictate
large-scale coherent flow. Many other plumes rise from
boundary layer, but either detach or are swept by the la
scale wind into the main rising plume before they have
chance to rise very far.

The nature of these superplumes is similar to that
scribed in Refs.@9,10#; it is characterized by a major plum
with smaller plumes branching from it~Fig. 1!. The super-
plumes are very structured and become even more struct
on the small scale as the Rayleigh number is increased
can be seen in Figs. 1 and 2. These superplumes are
concentrations of intense small-scale vorticity@15# and, as
the Ra is increased, vorticity not only becomes more co
plex within the plume cores, but more coherent vortices
present throughout the simulated region as seen in Fig.

All of these cases are technically in the ‘‘hard’’ turbule
regime @2#, with Re varying from 104 to 106. Two-
dimensional turbulence is marked by the simultaneous c
servation of energy and enstrophy. The inertial range is
tated by downward enstrophy cascade with ak23 energy
dependence. Energy spectra for 109<Ra<1012 are shown in
Fig. 4. At Ra5109 the kinetic energy spectrum follows th
k23 law quite well. As the Ra is increased the convect
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driving causes the beginning of the inertial range to
shifted to larger wave number~smaller wavelengths!. The
majority of the resolution in these models is clearly used
discern the inertial range. In the highest Ra case, the w
numbers barely reach the dissipation range. To comp
these models with traditional Rayleigh-Benard convect
simulations and experiments, we calculated Nu-Ra a
Re-Ra scalings. We find a Nu-Ra power law scaling of
form, Nu50.53Ra0.28 ~Fig. 5!, which matches the experi
mental 2

7 scaling quite well@1#.
For comparison, we have also run three Boussinesq m

els with Ra ranging from 109 to 1011 with Pr equal to unity.

FIG. 1. Blow up of the descending plumes for the various R
leigh numbers shown in Fig. 2. The size of these images is in te
of the total depth~D! of the convecting region.

FIG. 2. Snapshots of the entropy perturbation with dark col
representing low entropy~i.e., cold heavy fluid! and light colors
representing high entropy.~a! Ra51010, superplume and branchin
plumes are seen, additional plumes rise~sink! from the bottom~top!
of the cell but are swept into the major ascending~descending!
plume by the large-scale flow~b! Ra51011, ~c! Ra51012. This
sequence illustrates how relative energy in the small scales
creases with Rayleigh number.
5-3
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ROGERS, GLATZMAIER, AND WOOSLEY PHYSICAL REVIEW E67, 026315 ~2003!
In these models, we find a Nu-Ra scaling law N
50.44Ra0.29 as expected~Fig. 6!. The comparison confirms
that as far as the scaling laws are concerned, Boussinesq
anelastic approximations are similar. But, as can be see
Fig. 7. the models are qualitatively quite different. T
Boussinesq models are more top-bottom symmetric, du
the fact that the background density and viscous and the
diffusivities are constant~unlike the anelastic approxiation!.
What is also very apparent is the fact that as the plumes
in the Boussinesq fluid they do not expand and the mu
room cloud effect is missing. Because of this lack of exp
sion ~contraction! the fluid looks more laminar than its ane
lastic counterpart.

The major differences between these models and th
calculated by Refs.@9,10# are that these are anelastic and th
these use a Chebyshev grid in the vertical direction wh
allows us to resolve the thermal boundary layer very well.
Fig. 8, it is obvious that the boundary layer is very thin, b
because of the Chebyshev grid, we have 100 zones w
this boundary layer. A uniform grid with the same total num
ber of vertical zones would have only ten zones within
boundary layer. This fine resolution of the boundary lay
may be crucial in distinguishing the27 relation from the1

2

relation.
One of the major questions regarding the Nu-Ra scalin

just what drives the27 scaling. The two main theories are th
it is either~1! driven by the shear flow at the boundaries
up by the large-scale coherent flow or~2! dictated by the

FIG. 3. Same as Fig. 2 except vorticity is plotted here. Clo
wise flow is represented with light colors and counter-clockw
flow with dark colors. Strong coherent vortices are seen through
Concentrations of high vorticity occur in the rising and descend
plumes.
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buoyant plumes. The boundary conditions in these mod
are stress-free; therefore, there is no traditional visc
boundary layer. The theory presented in@6# assumes tha
there is a thermal boundary layer nested inside the visc
boundary layer in order to arrive at the27 scaling relation.
The results of our models seem to indicate that this is
necessary. Therefore, the large-scale coherent flow may
be the driving factor in the Nu-Ra relation. This is consiste
with the experiment by Cilibertoet al. @16# in which the
standard2

7 scaling law was reproduced even when the lar
scale coherent flow was blocked. This indicates that eit
the buoyant plumes drive the scaling relation or that t
scaling is robust and can be reproduced in many ways.

For Ra510821010 and for Pr'1 Castainget al.and Cha-
vanneet al. @1,5# find a Re-Ra power law exponent of 0.4
Analytic models suggest an exponent of 0.50@7#. We find
this exponent to be 0.50~Fig. 5! for our anelastic models an
0.49 ~Fig. 6! for our Boussinesq models.

The proximity of these scaling relations to experimen
and analytic work is unexpected, considering these mod
are for an anelastic gas with a significant density stratifi
tion in the vertical and that they are constrained to be t
dimensional. In the analytic derivations by Grossman a

-
e
t.

g

FIG. 4. Kinetic energy versus horizontal wave number for mo
els with 109<Ra<1012. Kinetic energy is normalized in each plo
These models are all clearly turbulent, with the inertial ran
matching the analytick23 slope~straight line!.
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Lohse@7#, the fluid is assumed to be incompressible. Co
pressiblity would require an additional term in the ener
dissipation; but this additional term behaves the same as
incompressible diffusion term and therefore does not af
the scaling law exponents. The equations for the ther
dissipation are the same as in the incompressible case
temperature replaced by entropy and the Nu redefined
respect to the entropy~8!. Therefore, the scaling relations s
derived for the anelastic case are the same as those fo
Boussinesq. Clearly anelastic convection differs from Bou
inesq~incompressible! convection in the details of the flow
Since in a fully compressible calculation, rising~sinking!
plumes expand~contract! as in planetary atmospheres a
stellar interiors. However, the total heat transfer, as meas
by the Nu, is apparently little affected by this difference
flow structure.

It is important to recall that here we have assumed
fluid has constant dynamic viscosity and thermal conduc
ity. Other anelastic simulations with constant kinematic v
cosity (n̄) and thermal diffusivity (k̄) show somewhat dif-

FIG. 5. log10(Nu) versus log10(Ra), similarly for Re-Ra. These
plots show the Nu-Ra and Re-Ra scaling relations. No transitio
detected up to Ra51012 for either scaling relation.

FIG. 6. Same as Fig. 5, except for Boussinesq models.
02631
-

he
ct
al
ith
th

the
s-

ed

e
-
-

ferent convective structures. In particular, there are m
prominent small-scale plumes sinking from the top bound
~where the diffusivities are no longer large! @17#.

One of the salient features of laboratory Rayleigh-Ben
experiments has been the appearance of the large-scal
herent flow. This coherent flow could be a mechanism
inducing some two dimensionality in a three-dimension
flow. If this large-scale flow persists at even higher Rayle
numbers it may be an indication that two-dimensional mo
els of Rayleigh-Benard convection can provide accurate s
ing laws for 3D laboratory experiments, as we have se
here.

IV. CONCLUSIONS

Our 2D anelastic convection for constant dynamic visc
ity and thermal conductivity is dominated by a large-sc
coherent flow similar to that observed in experiments. T
coherent flow is shuttled by an ascending and descen
superplumes, as seen in previous Boussinesq simulat

is

FIG. 7. Entropy perturbation for a Boussinesq simulation w
Ra51011. The entropy perturbation is directly proportional to th
temperature pertubation in the Boussinesq approximation, with l
colors representing warm fluid and dark colors representing c
fluid. Note the lack of expansion in the plumes that is seen in
anelastic case and the top-bottom symmetry that is lacking in
anelastic case.

FIG. 8. The mean entropy for an anelastic model with
51011 plotted versus thez-level number. The entropy here has be
set to 0 at the top boundary and 10 at the bottom boundary. T
prescribedDS helps determine the dimensionless Rayleigh num
~7!. Note, since a Chebyshev grid is employed in the model,
actual thermal boundary layer thickness is 1/200 of the depth
would not be perceptible in this plot if entropy were plotted vers
the z coordinate.
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ROGERS, GLATZMAIER, AND WOOSLEY PHYSICAL REVIEW E67, 026315 ~2003!
The structure of these plumes, however, is qualitatively
ferent because of the significant expansion of rising gas
contraction of sinking gas. Yet, quantitatively, we find th
the Nu-Ra and Re-Ra scaling relations derived here are
same as those determined analytically for this Ra-Pr reg
and that they are the same as those found experimen
The fact that these models lack a viscous boundary layer
still yield the scaling relations found experimentally sugge
that the driving mechanism of the27 scaling law does no
require the nesting of the thermal boundary layer within
viscous boundary layer.
A.
i, J
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